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The structure of the one-dimensional steady spherically symmetric rarefaction flow of an ideal (inviscid and non-heat-conducting) 
gas in the neighbourhood of a reflection point of a "boundary" C--characteristic is investigated in principal order. The "boundary" 
C--characteristic separates the gas at rest from the flow due to the outward motion of a piston which confines the gas. In the rt 
plane, where r is the distance from the centre of symmetry and t is the time, the reflection point, which coincides with the point 
of arrival on the t axis of the boundary characteristic, coincides with the origin of coordinates. The initial velocity of the piston 
may be zero (for positive acceleration) or finite. When two symmetrical plane pistons advance, the "derived" derivatives of all 
the flow parameters on the C--characteristic at the origin of coordinates, which in this case lies on the plane of symmetry, are 
finite. When a cylindrical and spherical piston advance, the derived derivative of the pressure (velocity) of the gas on the C"-- 
characteristic at the origin of coordinates becomes minus (plus)-infinity although without intersecting characteristics of the same 
family [1-4]. © 2000 Elsevier Science Ltd. All rights reserved. 

The infinite increase of the derivatives in the absolute value, irrespective of their sign, is sometimes 
regarded [5, 6] as evidence of a "gradient catastrophe", which, by destroying continuous flow, makes 
the isentropic expansion (and compression) of a gas "from rest to rest", introduced previously in [7] 
and later used in [8-10], impossible. The investigation carried out below, which is of independent interest, 
confirms the possibility of such a continuous isentropic process. A similar investigation was carried out 
previously [11] for cylindrically symmetric rarefaction flow. 

1. B E H A V I O U R  O F  T H E  P A R A M E T E R S  I N  T H E  N E I G H B O U R H O O D  
O F  T H E  B O U N D A R Y  C H A R A C T E R I S T I C  

Suppose p is the pressure, s and h are the specific entropy and enthalpy, p = p (p, s) is the density, 
a is the velocity of sound and o is the only (radial) component of the gas velocity. We will investigate 
the shock-free flows, beginning from the "uniform rest" state (u = 0, p -= P0, s = So). By virtue of the 
equation of conservation of entropy in a particle and the initial homogeneity of the entropy s -= So not 
only at the initial instant, the equations of continuity and motion [12] can be written in the form 

~h ~h 2 ( ~ v  v )  ~v ~ v ~ h  a_ 2 ( ~ p ]  
- - + v  = 0 ,  + v  = 0 ,  = (1.1) 
a t  ~ r  + a  + 27  "- 'r+07r =P" .,, 

In addition to the trajectories of the particles, system (1.1) has two families of characteristics 

Dr 
- - = V  + a  
at 

where the upper (lower) sign corresponds to C + (C-)-characteristics. As previously [3, 11], we will use 
the semi-characteristic variables r~ with ~ constant along the C--characteristics. In these variables with 
the first two equations of system (1.1) and the equation for t take the form 

2a2v 1 
hr-aVr +(v -a)------7 =0" h~ +av~ +(a-v)(wr +h')t~ =O' tr= v -a  (1.2) 
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Fig. 1. 

In Figs l(a)  and (b) the trajectories of the piston r = R(t), which begins to move from the point i, 
are shown by the thick curves, while the characteristics are represented by the thin curves. The boundary 
C--characteristic i 0 separates the perturbed gas above it from the homogeneous gas at rest under it. 
We will give the parameters of the homogeneous gas at rest the subscript 0, and we will give quantities 
different from them at the point i the subscript i. In particular, ri = R( t i )  is the initial coordinate of the 
piston while wi = R " ( t i )  is its initial acceleration. The rectilinear C--characteristic i 0 is the line of 
discontinuity of the derivatives t~, o~, h~ . . . .  for continuous o, t~r, hr . . . .  equal to zero. All the variables 
are dimensionless with r~, rT/a~, P~i, a~ ~, P~a~ 2 and a82/r?as scales of length, time, velocity, density, specific 
enthalpy, pressure and acceleration of the piston. Dimensional quantities are given a superscript 
"degree". Corresponding to this we have r i = 1, ti = -1, a0 = P0 = 1. For an ideal gas h0 = 1/(y - 1), 
whilep0 = 1/~,, where "/is the adiabatic index. Figure l(a) corresponds to the motion of the piston with 
zero initial velocity and with'initial acceleration w~ > 0, while Fig. l(b) corresponds to the motion of 
the piston with finite initial velocity and with infinite acceleration. The second possibility is 
obtained from the first by taking the limit wi ~ 0% while the first is obtained from the second by 
transferring in Fig. l(b) from the piston trajectory with the beam of C--characteristics at the point i to 
the trajectories of a particle which intersects the boundary characteristic at an arbitrary point i ° with 
O < r i o < r i = l .  

When t ~> 0 a "reflected" C+-characteristic emerges from the point O, on which the derived derivatives 
are discontinuous. The velocity of the reflected characteristic at the point 0 is equal to a0 = 1. 

When wi < oo in the region of the perturbed gas we put ~ = t - I i = t + 1 at the point where the given 
C--characteristic emerges from the piston trajectory. With this choice, the gas is at rest for ~ < 0 and 
is perturbed for ~ > O, where 

t~, i = i, v~i  E w i = R " ( t  i )  (1.3) 

Above the boundary characteristic (for ~ = +0), in view of the second equation of (1.2) and the method 
of normalization 

h~ = -u~ (1.4) 

Differentiating the first equation of (1.2) with respect to ~, and the second with respect to r, eliminating 
h~r from . . . . . . .  them and eliminating h~ using (1.4), we obtain t~ = t~ / r  for ~ = +0. Integrating this equation, 
taking the mmal condmon from (1.3) into account, we obtain 

v ~ = wi / r  (1.5) 

Similarly, an equation for t~ with ~ = 0 is obtained by differentiating the third equation of (1.2) with 
respect to ~, taking into account the fact that a = a(p, s) and s ~ So. After eliminating h~ using (1.4) 
and substituting ~ from (1.5), it takes the form 

t ~ r = -Otw i l r ; 0t=O~pp0/2, ~pp = ( ~ 2 0~ l Op 2 ) s (1.6) 

where co = 1/p is the specific volume. For an ideal gas a = ( , /+  1)/2. Integration of Eq. (1.6), taking 
into account the condition for t~ from (1.3), gives the well-known formula [1, 3,.4] 

t~ = 1 - O~ wi In r (1.7) 
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According to relations (1.6) and (1.7) for a "normal" gas in which cop.. > 0, for outward motion of 
the piston (wi > 0) the derivatives h~ ~ --~, t~ ~ oo where r ~ 0, but t~ ~rom (1.7) does not vanish on 
the boundary characteristic. Points in the rt plane, at which the Jacobian D(r, t)/D(r, ~) = t~ = O, 
correspond to the intersection of C--characteristics. Hence, as already noted, the gradient catastrophe 
does not occur on the boundary characteristic. 

By virtue of (1.4), (1.5) and (1.7) on the boundary characteristic for ~ = +0 we have 

r r t~ r(1 - O~w i In r) o~r In r 

The last equation holds in a fairly small neighbourhood of the origin of coordinates for values of r 
which satisfy the condition 

r ,~ r. = exp (-1/(awi)) (1.9) 

A further investigation was carried out precisely for these values of r. In the case when the piston 
moves with a finite initial velocity (ui > 0, wi = ~) in (1.9) r. = 1. This is the maximum value ofr . .  

When condition (1.9) is satisfied, expressions similar to the last formula in (1.8) hold on i 0 for the 
partial derivatives with respect to time of all the gas parameters, in particular, p and a. According to 
this, in the neighbourhood of the origin of coordinates, between the boundary characteristic and the 
reflection characteristic, i.e. when -1 < ~ = t/r ~< 1 and for r satisfying condition (1.9), we will seek u, 
h and a in "principal order" in the form 

v ( r , z ) -  V(~) h(r,,c)=ho + H(x,), a( r ,z ) - - l+  a('c._.....~) (1.10) 
a l n r '  a l n r  a l n r  

According to the definition, x = -1 on the boundary characteristic, where o = 0, h = h0 and a = 1, 
and for r from (1.9) the "derived" partial derivatives of t9 and h are given by the last equality in (1.8). 
Hence, by assuming that, in the principal order Eqs (1.10) allow of differentiation with respect to r and 
with respect to t, we obtain the following initial conditions for V and H 

V(-1) = H(-1) = 0, - V'(-I) = H'(-I) = 1 (1.11) 

Here and henceforth the prime denotes differentiation with respect to r. 

2. THE S O L U T I O N  B E T W E E N  THE BOUNDARY C H A R A C T E R I S T I C  
AND THE TIME AXIS 

By determining, from relations (1.10), the necessary partial derivatives and substituting them into 
Eqs (1.1), we obtain that the functions V(z) and H(x), when -1 ~< x ~< 1, obey the following equations 

H'-xV" + 2V = 0, V'- ~H' = 0 (2.1) 

Substituting H' from the first equation of this system into the second, we arrive at an equation, the 
solution of which, satisfying the two conditions (for V and V') from (1.11), has the form V(x) = 
(x z - 1)/2. Substituting this expression into the first equation of system of (2.1) and integrating the 
equation thus obtained, taking into account the condition for H from (1.11), we find that H(T) = 

+ 1. The condition for H' from (1.11) is satisfied automatically as a consequence of the satisfaction 
of the corresponding conditions for V and I/' and Eqs (2.1) for ~ = -1. The possibility of satisfying the 
two conditions from (1.11), when solving the first-order differential equation for V, is a consequence 
of the fact that for this equation the corresponding boundary characteristic of the point T = -1, V = 0 
is a node. The point x = 1, V = 0, corresponding to the reflected characteristic, is also a node, but this 
is a result of the solution. 

In view of the expressions obtained for V and H and the fact that the flow is isentropic in a 
neighbourhood of the origin of coordinates that is small in the sense of (1.9) when ~-1 ~< z ~< 1 for u, 
h, p and a the following representations hold in principal order 

,~2 _ 1 x + 1 x + 1 ( a  - 1)(I: + 1) 
v = 2aln"'-'~' h = h 0 + ~---'~n r '  p = P0 + aln---~' a = 1+ (2.2) a ln  r 
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Above the reflection characteristic solution (2.2) is incorrect because it gives infinite values of the 
parameters on the t-axis. The latter is clear because the condition of symmetry at the centre of the 
spherical volume filled with gas: V = 0 when r = 0, was not used to obtain it. By virtue of this condition 
the reflected characteristic for continuous parameters, as will be seen below, will be the line of 
discontinuity of their derived derivatives. In order to take these features of the solution into account, 
in the region between the reflected characteristic and the t axis we will change from x to rl = t/~ = r/t, 
while the distributions of ~; h and a for 0 ~< rl ~< r from (1.9) in principal order will be sought in the 
form 

VO(rl) H°(rl) A°(rl) (2.3) 
u(r,1])==otln t , h(r, r l ) = h o ' l - ~ ,  a ( r , + l ) = l + - ~  

ctlnt ¢tlnt 

On the reflected characteristic q = z = 1 and t = r. Hence, by formulae (2.2) the parameters on it 
will be continuous if we require the following conditions to be satisfied 

V°(I) = 0, H°(1) = 2 (2.4) 

The continuity of the other thermodynamic parameters, other than the enthalpy, follows from the 
continuity of the enthalpy and the constancy of the entropy, when conditions (2.4) are satisfied. The 
corresponding linear relations between small increments in the enthalpy, pressure and velocity of sound 
(for constant entropy) have already been used when obtaining the formulae fo rp  and a from (2.2). 

Proceeding in the same way a when deriving system (2.2), we arrive at the equations 

I ] 9 ° -  q2/:/° + 2V°--O, /:/° - q¢° -- 0 (2.5) 

in which the dot denotes differentiation with respect to q. 
Substituting H ° from the second equation of system (2.5) into the first, we arrive at an equation whose 

solution, which satisfies the first condition of (2.4), has the form r ( r l )  = C(rlZ-1)/rl z. The constant of 
integration C occurred in the formula for ~ due to the fact that the point rl = 1, 1~ = 0 is a node. In 
view of the symmetry conditions mentioned above, C = 0 and 1~ --- 0. Hence, in a small neighbourhood 
of the origin of coordinates above the reflected characteristic the gas is at rest "in principal order".  
Substituting ~ - 0 into any of Eqs (2.5), we obtain H ° = 0. Consequently, by virtue of the second 
condition from (2.4)/4 ° =- 2. Taking this into account we obtain (in the same way as (2.2)) that, in a 
small neighbourhood of the origin of coordinates in the sense of (1.9) above the reflected 
characteristic (when 0 ~< q ~< 1), the following representations hold for t~, h , p  and a in principal order 

2 2 2(~ - 1) (2.6) 
u =0,  h=ho+a----~nt , p=p0+----~-nt , a = l - ;  o{lnt 

For fixed r the behaviour of the velocity of the C +-characteristics D = a + ~ depends on the quantity 
¢~ = ¢OppO/2. If ~ > 1, which, in particular, holds for an ideal gas, then, as follows from (2.2) and (2.6), 
D increases monotonically when the reflected characteristic intersects in the direction in which t increases. 
Consequently, the C+-characteristics diverge here, ensuring continuity of the flow as in the problem 
of the outward motion of a cylindrical piston [11]. The difference from the cylindrical case is the fact 
that there the derived derivatives of D when x = 1 become infinite, in view of which the reflected 
rarefaction wave is "short". Here these derivatives are finite. 

If we transfer from t~,p and the other parameters to their "normalized" increments: &p = (¢p - %)K~(et) 
with Ko(ct) = Kp(ot) = Kh(et) = ¢t and with Ka(¢0 = et/(c~ - 1), then, as follows from (2.2) and (2.6), 
their fields will be independent of the gas "thermodynamics". According to results obtained previously 
in [11], in the neighbourhood of the "origin of coordinates" rarefaction flows with plane and cylindrical 
wave possess the same self-similarity. In them, however, the factors K,p depend not only on a, but also 
on the initial acceleration of the piston wi. The fact that the.spherically symmetric rarefaction flow wi 
in a small neighbourhood of the origin of coordinates is analogous to the self-similar Guderley solution 
on the collapse of spherical and cylindrical shock waves [13-15]. 

For inward motion with zero initial velocity and non-zero (negative) acceleration of a spherical piston 
the intersection of characteristics of the same family with the boundary characteristic and the formation 
on them of a shock wave moving towards the centre occurs for any w i < 0, and for motion of a cylindrical 
piston the same occurs if wi < w, < 0, where w,  i is a certain "critical" value of the acceleration. For 
inward motion with a finite velocity extending to the centre or to the axis of symmetry, a shock wave, 
naturally, is formed immediately at the initial point of the piston trajectory. In all these cases the intensity 
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of the shock wave formed increases without limit as r ~ 0. Because of this flow in the neighbourhood 
of the point of arrival of the shock wave at the centre or on the axis of symmetry (r = 0, t = t s < 0), 
containing a reflected shock wave, is described by the above-mentioned self-similar solution, irrespective 
of the "prehistory" (of the values of D i and wi). As also in the spherically symmetric rarefaction flow 
considered, in these compression flows the prehistory only governs the values of r  and tmthe dimensions 
of the region of self-similarity in the neighbourhood of the point r = 0, t = t 8. In this case compression 
flows corresponding to special piston trajectories will be exceptional (non-self-similar down to r = 0, 
it is true, not as regards the increase in the intensity of the shock wave but as regards the distributions 
of the parameters after it). The latter should ensure focusing at the same point: r = 0, t = t s of a beam 
of the C--characteristics that overtake the shock wave. 

3. E V O L U T I O N  OF THE S O L U T I O N S  WHEN T H E R E  IS 
A C H A N G E  IN THE TYPE OF SYMMETRY 

Using formulae (2.2) and (2.6) and similar results, obtained for the cases of plane and cylindrical 
symmetry [11], we will compare the distributions 8~ and 8p in a small neighbourhood of the origin of 
coordinates for the motion of plane, cylindrical and spherical pistons. 

In the case of the symmetrical motion of two plane pistons in this neighbourhood with 
corresponding introduced normalizing factors Ko and Kp--the functions ct and wi in principal order we 
have [11] 

8 p = ( l + x ) r = r + t ,  

8p=2 t ,  8u = - 2 r  

80 = - ( l + x ) r = - ( r + t )  ( -1~  I:--- < 1) 

( 0 ~  < T I ~ 1) 
(3.1) 

Similarly, rewriting the results previously obtained [11] for the motion of a cylindrical piston in the 
notation used above, we will have 

8 p  -- t'('~)~r;, 8v  -- -v( 'c) - , / ;  ( - !  <- 't <- 1) 

8 p  ~- Po( ' lhf f ,  8,,  ,- - n v o ( n ) ~  (o  ~ 11 -< 1) 
(3.2) 

with the functions P(x) . . . .  from [11], represented in Fig. 2. Here, in the second formula for 6u in (3.2) 
the error which occurs in [11] in introducing but not when calculating ~(r l)  has been corrected. In 
Fig. 2, curves 1 and 2 show the functions P(x) and V(x), while curves 1 ° and 2 ° are the functions po(q) 
and IP(rl). 

In the neighbourhood of the origin of coordinates the pressure and velocity isolines corresponding 
to the plane case, by virtue of formulae (3.1), are parallel straight lines which suffer a discontinuity on 

Z 

f 
Fig. 2. 
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the reflected characteristic. They are shown in the left patterns of Figs 3(a) and (b), respectively. In 
Fig. 3 the isolines, including the boundary characteristic and the upper part of the ordinate axis, are 
represented by the bold continuous line while the reflected characteristic is represented by the fine 
straight line. 

According to formulae (3.2) for 8p for the motion of a cylindrical piston in the neighbourhood of 
the origin of coordinates on the isobars 

dt 2 x P ' -  P dt 2/b° 
dr 2P" ( -1~  x~< 1)' dr 2r}/~* - P * (0~< rl~< 1) 

Since the right-hand sides of these equations are functions of only x or rl, all the isobars intersect 
each ray, emerging from the origin of coordinates, at the same angle. This property is taken into account 
qualitatively in the middle pattern of Fig. 3(a), constructed taking the behaviour of curves i and 1 ° of 
Fig. 2 into account. 

Similarly, by virtue of formulae (3.2) on the lines 6o = const we have 

dt 2 x V ' -  V d: 2(v°+~I¢*) 
dr 2V - - - - 7 -  (-1 ~< "~ ~< 1)' ~ =  ~ =  dr rl(VO+2rll; '*) (0~<TI~<I) 

The velocity isolines, constructed taking into account the behaviour of curves 2 and 2 ° (Fig. 2), are 
shown in the middle pattern of Fig. 3(b). According to Fig. 2 and the expressions obtained previously 
[11], when x = rl = 1 the derivatives in the formulae obtained above for the slope of the isobars and 
the constant-velocity lines become infinite. Hence, the isolines shown in the middle patterns of Fig. 3 
intersect the reflected characteristic tangential to it. 

By (2.2) for the motion of a spherical piston in the neighbourhood of the origin of coordinates 
when -1 ~< x ~< 1 along an isobar 

dt x+l  ~ ..~ 'C + ' 
dr In r 

In a small neighbourhood of the origin of coordinates In r < 0 and I In r [ >> 1. Hence, in principal 
order, under the reflected characteristic and on approaching it from below, the slope of an isobar is 
slightly less (taking the sign into account) than the slope of the ray t = xr, arriving at the same point. 
In the same order, above the reflected characteristic, by virtue of (2.6), the isobars are sections of straight 
lines parallel to the abscissa axis. The pattern on the right of Fig. 3(a) qualitatively shows these features 
of the isobars of spherically symmetric rarefaction flow. 
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Similarly, by virtue of (2.2), along the velocity isolines in the motion of a spherical piston for 
-1 ~< t ~< 1, i.e. between the boundary characteristic and the reflected characteristic 

dt x 2 - 1 

dr 2x In r 

In view of this formula, the slope of the velocity isolines above the r axis, where (t2-1)/t < 0, is greater 
than, while under the r axis, where (x2-1)/x > 0, it is less than the slope of the rays t = tr. The slopes 
of the velocity isolines and of the rays t = tr differ considerably only in a small neighbourhood of the 
abscissa axis, on approaching which the slope of the isolines approaches infinity. The right pattern in 
Fig. 3(b) qualitatively reflects these features of the velocity isolines. We recall that, according to (2.6), 
8u = 0 in principal order above the reflected characteristic. 

With the obvious difference between the rarefaction flow isolines with plane, cylindrical and spherical 
symmetry, their evolution on passing from the left to the right patterns of Fig. 3, a and b is natural. 
This is important because the distributions of the parameters obtained above and in [11] are based on 
the assumption that representations (1.10), (2.3) and their analogues in [11] are differentiable. In the 
case of cylindrically symmetric flow the results obtained in [11] are confirmed by the analysis of the 
solution of the inverse problem carried out in [16]. For values of 5p specified on the semi-axis t > 0, 
by (3.2) when 8p = 0 for t < 0 the properties of the solutions of the direct problem [11] and the inverse 
problem [16] are identical. 

Thus, for the given distribution of 5p in [16], as in [11], in the first approximation on the reflected 
characteristic the derived derivatives, being continuous, have a logarithmic singularity. In the next 
iteration it is "quenched" by the same singularity of the derivatives of the velocity of the C+-characteristics 
D. At the same time, the spherically symmetry inverse problem, investigated in [16], with a power 
distribution of p, specified a priori on the semi-axis t > 0, by virtue of (2.6) differs essentially from the 
direct problem which occurs in the outward motion of a piston. 

4. C O N C L U S I O N  

The unlimited increase in the derivatives of the parameters of spherically symmetric and 
cylindrically symmetry flows as one approaches the reflection point of the boundary characteristic from 
the t-axis is a property which, in general, is inherent not only in this but any "discontinuous" C-- 
characteristic. Here the term "discontinuous" applies only to a characteristic which emerges from a 
point of the piston trajectory at which its acceleration or velocity breaks, or the characteristic, produced 
by reflection from the piston trajectory of the C+-characteristic, which carries discontinuities of the first 
or second derivatives of the parameters. It is obvious that such discontinuous C--characteristics are, 
in this sense, exceptional, unlike the continuum of C--characteristics of the rarefaction flow which arises 
when flow occurs around the initial (accelerating) part of the piston trajectory, and for a finite initial 
piston velocity--a centred rarefaction wave. Along these, the derivatives of all the parameters, as one 
approaches the t-axis, naturally remain finite. In the problem of isentropic rarefaction or compression 
from rest to rest (the second) is obtained from the first by changing the signs of the velocity and time) 
the total derivatives along the rectilinear ÷ closing C -characteristic are zero everywhere, including the 
point where it emerges from the t-axis. Hence it follows immediately that, at this point, the derivatives 
are finite both below and above the closing C--characteristic (with respect to the first derived derivative) 
is ensured by a special choice of the piston trajectory, which is found from the solution of the 
corresponding Goursat problem. 

Spherically symmetric rarefaction and compression from rest to rest are of interest not only in 
themselves but also as one of the ways of solving the problem, discussed in [6], of the possibility of such 
a transition for an arbitrary three-dimensional volume. To set up this transition it is sufficient to describe 
the initial spatial volume, bounded by impenetrable walls, by a sphere, then considered as a spherical 
piston. For the law of motion of the walls of an ideally flexible spatial piston, which, in accordance with 
the calculated spherically symmetric flow, it is convenient to determine using the Lagrange variable 
[12], the final form of the volume obtained will be similar to the initial form. 
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